

The Carbon Problem: A New Perspective

Howard H. Newman, Chairman and Chief Executive Officer February 2019

HARNESSING PLANTS

To Fight Climate Change

> Sak Where cures begin.

Jonas Salk

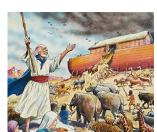
0

"What people think of as the moment of discovery is really the discovery of the question."

Sometimes, It Depends on How You Look at Something

For Example...

Gravity



Newton

Rights of Man

The Divine Right of Kings

Speciation

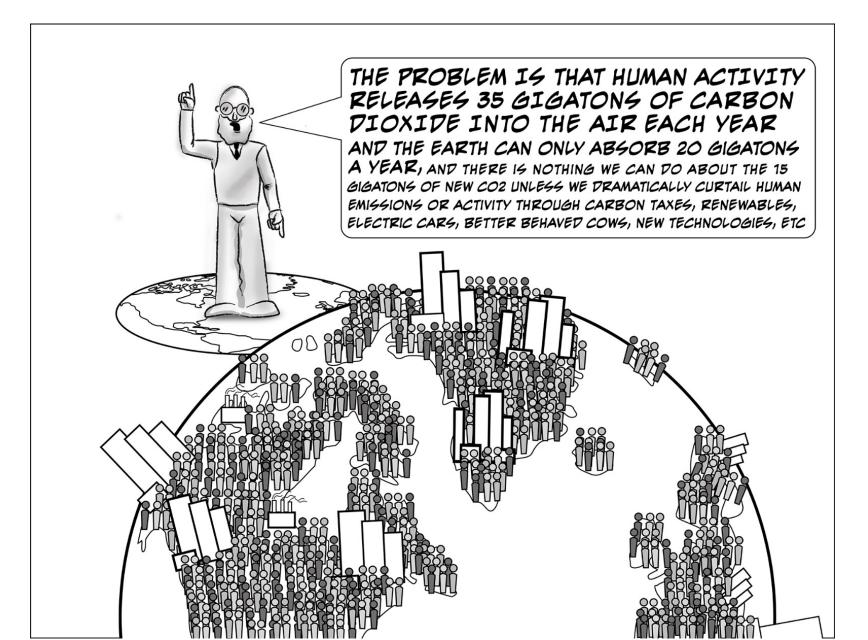
Noah's Ark

Computing

Bill Gates

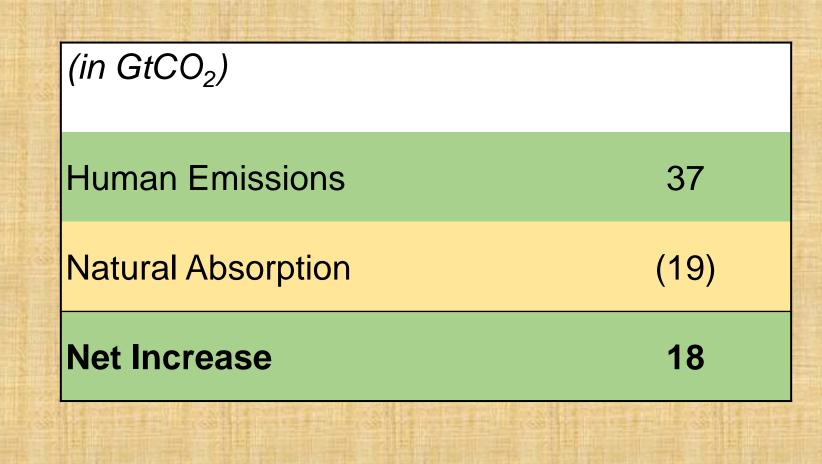
Einstein

Certain Unalienable Rights



Darwin

Steve Jobs


The Problem as We See it Today

Conventional Math

Difficult Imbalance to Overcome

Income Growth Population Growth Behavioral Change Conservation Technology

Year	Global GDP (\$ in trillions)	Emissions (Gt)	Emissions / GDP (lbs per \$)	Population (billions)	Emissions / Capita (lbs per person)
1988	\$19.2	21.8	2.42	5.1	9,400
2017	\$80.7	38.8	1.06	7.5	11,380
Compound Growth	5.1%	2.0%	(2.8%)	1.3%	0.7%

SALK INSTITUTE FOR BIOLOGICAL STUDIES

Sources: GDP: St. Louis FRED, PwC. Population: The World Bank, United Nations Population Division, Census reports from national statistical offices, Eurostat, U.S. Census Bureau, Secretariat of the Pacific Community. Emissions: Global Carbon Project, National Oceanic and Atmospheric Administration. Note: GDP reflects market exchange rates in current US \$.

The New Math

(in GtCO ₂)	
Natural Absorption	(746)
Natural Release	727
Human Emissions	37
Net Increase	18

18 Gt of CO₂ more per year than the earth can handle

Salk scientists believe:

- Getting plants to bury more carbon, and bury it in a stable form, has the potential to make a major contribution to the carbon problem
- A 2.5% reduction in natural emissions has the same impact as a 50% reduction in human CO₂ emissions

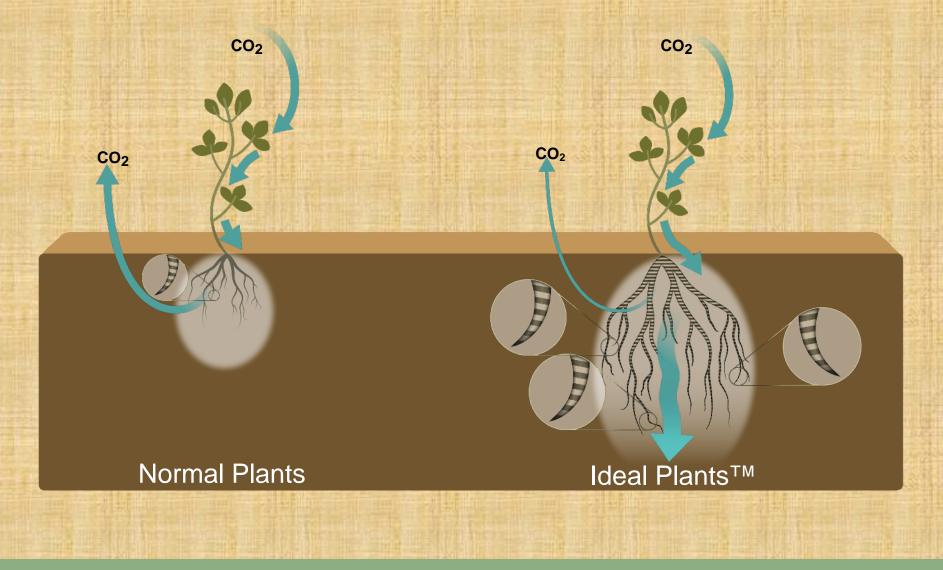
Better Way to Get to 20 Gt per Year

Approach One TERRESTRIAL Goal: 25% of human emissions Approach Two AQUATIC Goal: 25% of human emissions

Create Ideal Plants[™] to store carbon in soil

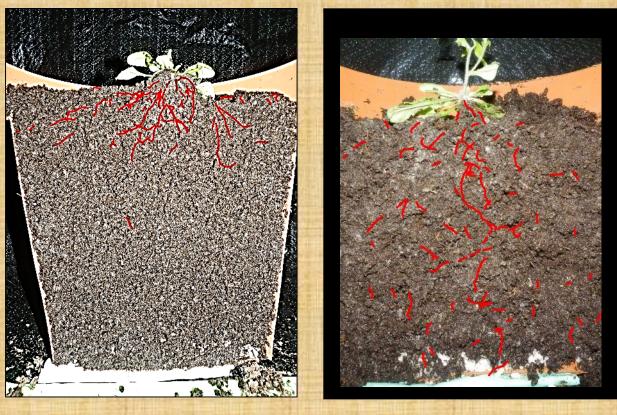
Adaptive Aquatic Restoration to store carbon in sediments

2.


The Salk Solution: Ideal Plants™

- Genes for deep and more extensive roots
- Genes for stable carbon compounds (suberin)
- Stacked genes for increased suberin in deep and extensive roots

Keeping Carbon Underground



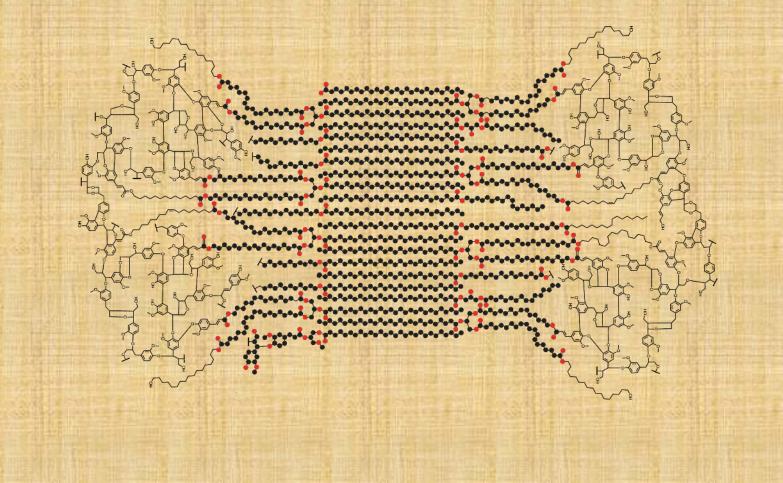
Deeper Roots

 Engineered expression of a single gene alters root architecture

Wild Type

Gene Edited

More Extensive Roots


 Engineered expression of another single gene doubles root biomass

Stack identified genes

Suberin: A Natural Carbon-Storage Device

Benefits of Ideal Plants™: Sequestration Potential From 9 Crops

- 3 8 Gt per year from 6 row crops
 - Corn, wheat, soybeans, cotton seed/cotton, rice, rapeseed
- Doable in 10 15 years
- Cost of \$0 \$10 per ton sequestered

- Similar potential from 3 cover crops
 - Tillage radish, crimson clover, annual ryegrass

Benefits of Ideal Plants™: Increased Soil Carbon

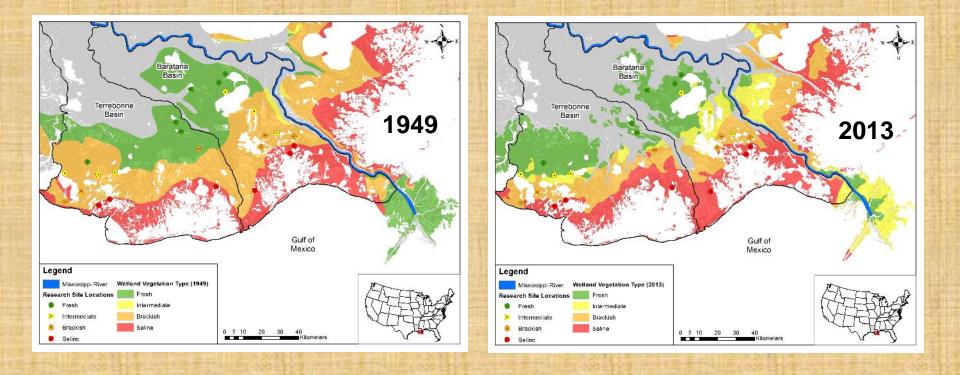
- Improved soil health
- Increased crop yields
- Increased resistance to drought, flooding and disease
- Improved water-use and nutrient efficiency

Adaptive Aquatic Restoration

■ Aquatic plants are natural Ideal Plants[™]

- 30X or more greater carbon storage than land plants
- Rebuild lost land
- Fish breeding begins here
- 50% of habitats lost over past 30 years

The Salk Solution: Adaptive Aquatic Restoration



- Local aquatic populations are genetically identical (clones)
- Small environmental changes destroy entire populations
- Aquatic species have extensive natural variation
- Informed genetics identifies the best genotype/phenotype for native recolonization

The Mississippi River Delta

Soil carbon dynamics in four marsh habitats of coastal Louisiana

The Mississippi River Delta

Exploiting natural variation to select appropriate genotypes

Adaptive Aquatic Restoration: Progress To-Date Mississippi Delta

- Established Aquatic Plant Consortium
 - Louisiana Universities Marine Consortium
 - Tulane ByWater Institute
 - Water Institute of the Gulf
 - Lake Pontchartrain Basin Foundation
 - Joe W. and Dorothy Dorsett Brown Foundation
- Identified critically threatened species
 - Established growing conditions for these species
 - Begun sequencing genomes
 - Begun measuring root suberization

Why now?

Molecular biology meets plant breeding meets synthetic biology...

1980's Molecular Genetics Revolution

2000's Genomics Revolution

2010 Precision Breeding & Genome editing

Better Way to Get to 20 Gt per Year

Approach One TERRESTRIAL Goal: 25% of human emissions Approach Two AQUATIC Goal: 25% of human emissions

Adaptive Aquatic Restoration to store carbon in sediments

2.

